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Abstract The ammonium manganese phosphate mono-

hydrate (NH4MnPO4 � H2O) was found to decompose in

three steps in the sequence of: deammination, dehydration

and polycondensation. At the end of each step, the con-

secutive one started before the previous step was finished.

The thermal final product was found to be Mn2P2O7

according to the characterization by X-ray powder dif-

fraction (XRD) and Fourier transform infrared spectros-

copy. Vibrational frequencies of breaking bonds in three

stages were estimated from the isokinetic parameters and

found to agree with the observed FTIR spectra. The

kinetics of thermal decomposition of this compound under

non-isothermal conditions was studied by Kissinger

method. The calculated activation energies Ea are 110.77,

180.77 and 201.95 kJ mol-1 for the deammination, dehy-

dration and polycondensation steps, respectively. Ther-

modynamic parameters for this compound were calculated

through the kinetic parameters for the first time.

Keywords Ammonium manganese phosphate

monohydrate � Kinetics � Thermal decomposition �
Thermodynamics

Introduction

The well known series of compounds of type MIMII

PO4 � H2O (MI = K?, NH4
?; MII = Mg2?, Mn2?, Fe2?,

Co2?, Ni2?) relate to the dittmarite series. All of these

compounds crystallize in the rhombic space group

Pmn21 C7
2v

� �
with Z = 2 [1]. These minerals are related to

struvite (NH4MgPO4 � 6H2O), which is found on ivory and

comes from the formation in urinary tracts and kidneys

[2, 3]. Dittmarite series are reported to be a biomineral and

found (rather infrequently) in urinary calculi [2]. They have

been widely applied as fireproof materials, fertilizers,

pigments for paints finishes for protection of metal and for

extraction of divalent cations from sea-water [4–7]. They

are a good source of macro- and micronutrients for plants

[8]. Inorganic phosphate hydrates are transformed into

various forms of phosphates or polyphosphates through the

dehydration and hydrolysis reactions upon heating [9, 10].

Those metal polyphosphates have been used in the fields of

luminescence and biomaterial (Ca2P2O7) [11] and indus-

trial catalyst ((VO)2P2O7, Mn2P2O7) [12, 13]. The thermal

final decomposition product of various manganese phos-

phorous compounds e.g. Mn(HPO3) [14], MnPO4 � H2O

[15] and Mn(H2PO2)2 � H2O [16] is found to be Mn2P2O7,

which exhibits interesting magnetic [17] and catalytic

properties [18]. Despite the vibrational behavior of dittm-

arite series was widely studied in the literature [19], the

thermal analysis of this series has received little attention.

In this respect, they are of great interest to be selected for

studying their kinetic and thermodynamic properties of

thermal decomposition.

The thermogravimetric/derivative thermogravimetric/

differential thermal analysis (TG/DTG/DTA) study is a

universal technique and widely used for the measurements

of kinetic parameters including the activation energy and

preexponential factor of transformation processes, which

involves chemical and physical changes in living bio-

chemical metabolism, as well as in the fields of industrial

and scientific researches. Besides, the thermodynamic

parameters of activated complex can be calculated through
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kinetic parameters, which are important in theoretical study

and applications in manufacturing level.

In our previous work, the kinetics and thermodynamic

properties of phosphate hydrate compound had been stud-

ied [20] and the aim of this work was to synthesize

NH4MnPO4 � H2O and its transformation products, those

were characterized by TG/DTG/DTA, Fourier transform

infrared spectroscopy (FTIR) and X-ray diffraction (XRD).

The non-isothermal decomposition kinetics analysis of

NH4MnPO4 � H2O in N2 atmosphere was carried out using

the isoconversional method of Kissinger [21]. The wave-

numbers of the activated bonds of three activation steps

were calculated and compared with the observed values

from FTIR spectra. The kinetic parameters and estimated

the thermodynamic functions of transition state complexes

(DH=, DS=, DG=), kinetic (A, E) parameters as well as

the calculated wavenumbers of the activated bonds in three

decomposition steps of NH4MnPO4 � H2O are discussed.

Experimental

Preparation

NH4MnPO4 � H2O was prepared using a method reported

in the literature [22]. A 0.5 M solution of MnCl2 � 4H2O

was added to an excess saturated (NH4)2HPO4 solution

(10 M). Hydrazonium sulfate, (N2H6)SO4 was added into a

reaction mixture in order to prevent an aerobic oxidation of

the divalent metal ion under an extremely basic condition.

The prompt precipitation was obtained and was further

digested at 358 ± 5 K for 1–2 days. Then the product was

filtered, washed with DI water and dried in a desiccator.

Characterization

The manganese and water contents of synthesized

NH4MnPO4 � H2O were confirmed by using atomic

absorption spectrophotometry AAS (Perkin-Elmer, Analyst

100) and TG/DTG/DTA (Pyris Diamond Perkin-Elmer).

The TG/DTG/DTA experiments were performed at the

heating rates of 10, 15, 20, and 25 K min-1 over the

temperature range from 323 to 823 K in N2 atmosphere

with the flow rate of 100 mL min-1. The sample mass of

ca. 6.0–10.0 mg was filled into an aluminum crucible

without pressing. The thermogram of a sample was recor-

ded in an open aluminum pan using a-Al2O3 as the refer-

ence material. The synthesized NH4MnPO4 � H2O was

calcined in a thermal analyzer at 593 and 793 K in N2

atmosphere and the thermal transformation products were

further characterized. The morphologies of these com-

pounds were investigated by SEM using LEO SEM

VP1450 after gold coating. The FTIR spectra of the

synthesized compound and its calcined samples were

recorded in the range of 4000–370 cm-1 using KBr pellet

technique (KBr, Merck, spectroscopy grade) on a Perkin-

Elmer spectrum GX FTIR/FT Raman spectrophotometer

with 16 scans and the resolution of 4 cm-1.

The structures of the prepared hydrate and its calcined

products were studied by XRD using a D8 Advanced

powder diffractometer (Bruker AXS, Karlsruhe, Germany)

with Cu Ka radiation (k = 0.15406 Å). The Scherrer

method was used to evaluate the crystallite size (i.e.

D = Kk/bcosh, where k is the wavelength of X-ray radi-

ation, K is a constant taken as 0.89, h is the diffraction

angle and b is the full width at half maximum (FWHM))

[23].

Kinetics studies

The kinetic investigation of the non-isothermal decomposi-

tion for the dehydration of crystalline hydrates is a solid-state

process of the type: A (solid) ? B (solid) ? C (gas) [24–

26]. The kinetics of such reaction can be described by various

equations taking into account the special features of their

mechanisms. This is a model-free method, which involves

measuring temperatures corresponding to the fix value of a
(extent of conversion) at different heating rates (b).

All kinetic studies are assumed to be based on the fol-

lowing equations:

da
dt
¼ kf ðaÞ ð1Þ

and

k ¼ Ae�
E

RT ð2Þ

where f(a) is a function depending on the particular

decomposition mechanism. The pre-exponential factor A

(min-1) is assumed to be independent of temperature

(T/K), E is the activation energy (kJ mol-1), R is the gas

constant (8.314 J mol-1 K-1), k is the rate constant and t is

time. The combination of Eqs. 1 and 2 gives:

da
dt
¼ Af ðaÞe� E

RT : ð3Þ

When b is the heating rate (b ¼ dT=dt; K min-1), Eq. 3

may be written as:

da
dt
¼ dT

dt

da
dT
¼ b

da
dT
¼ Af að Þe� E

RT : ð4Þ

Various methods of kinetic analyses are known such as

Kissinger’s method (differential method), Flynn–Wall–

Ozawa [27, 28], Coats–Redfern [29] and Van Krevelen and

Hoftijzer methods [30] (integral methods).

In kinetic study of NH4MnPO4 � H2O, Kissinger equa-

tion [21] was used to determine the activation energy and
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preexponential factor of deammination, dehydration and

polycondensation reactions. This method is well described

and widely used in literature, which provides the reliable

results.

The Kissinger equation used for Ea and A calculations

is:

ln
b

T2
P

� �
¼ ln

AR

Ea

� �
� Ea

RTP

� �
ð5Þ

where Ea is the activation energy (kJ mol-1), TP is the peak

temperature of the DTA curve which corresponds to the

maximum reaction rate, while other parameters are the

same as previously mentioned. The Arrhenius parameters,

together with the reaction model, are sometimes called the

kinetic triplet. According to Eq. 5, the plots of ln b
T2

P

� �

against 1000
TP

� �
can be obtained by a linear regression of

least-square method. The activation energies Ea can be

calculated from the slopes of the straight lines with the

best linear correlation coefficient (r2). Hence, the pre-

exponential factor from a point of the maximum tem-

perature, TP can be calculated from the intercept of the

straight lines.

Results and discussion

TG/DTG/DTA

Figure 1 shows the TG, DTG and DTA curves obtained at

four heating rates (b = 10, 15, 20 and 25 K min-1). The

thermal decomposition of this compound exhibits three

steps of mass losses, however step 1 is not well separated

from step 2. The TG curves illustrate no change in mass of

the compound until 423 K was attained. After that

remarkable mass loss was observed. Three steps of mass

losses correspond to three consecutive DTA endothermic

peaks at the maxima of 505, 551 and 711 K for the heating

rate of 10 K min-1. The deammination and dehydration

steps are observed as partially overlapping peaks over the

range of 373–593 K. The polycondensation step is sug-

gested to be observed over the range of 593–823 K. The

final decomposition product was confirmed to be manga-

nese pyrophosphate (Mn2P2O7). The corresponding

observed weight losses in two areas of decomposition were

18.85% and 5.20% by mass (Fig. 1), which agree very well

with theoretical mass losses of 18.85% and 5.96%,

respectively. The first and second steps of mass losses

correspond to the co-elimination of ammonia and water

molecules and the third corresponds to intramolecular

dehydrations (polycondensations) of anion, which occurs

until the completion of deammination and dehydration

were attained. The mechanism for the thermal decompo-

sition is suggested as follow [31]:

Steps 1, 2 (in the range of 373–593 K)

NH4MnPO4 � H2O sð Þ ! MnHPO4 sð Þ þ NH3 " þ H2O " :
ð6Þ

Step 3 (in the range of 593–823 K)

2MnHPO4 sð Þ ! Mn2P2O7 sð Þ þ H2O " : ð7Þ

SEM

The SEM micrographs of the title compound and its cal-

cined products at 593 and 793 K in N2 atmosphere are

shown in Fig. 2. The particle shapes and sizes are found to

change throughout the whole dehydration and decomposi-

tion products. The SEM micrograph of NH4MnPO4 � H2O

(Fig 2a) illustrates rod-like crystals, having sizes of about

1.00–2.00 lm in width and 4.00–5.00 lm in length. The

calcined product at 593 K (Fig 2b) shows retexturing and

coalescence in aggregates of irregularly non-uniform shape

of different sizes in the wide range of 0.50–6.00 lm. The

SEM micrograph of NH4MnPO4 � H2O calcined at 793 K

(Fig 2c) shows similar change as in Fig. 2b. The mor-

phologies of calcined products are different from that of

NH4MnPO4 � H2O, which is the effect of the deammina-

tion, dehydration and the polycondensation processes.

FTIR spectroscopy

The FTIR spectra of synthesized NH4MnPO4 � H2O and its

calcined products at 593 and 793 K are shown in Fig. 3a, b

and c, respectively. The band at 3423 cm-1 in Fig. 3a is

assigned to the O–H stretching vibration, while the bands

below 3223 cm-1 in the FTIR spectra is due to the N–H

stretches. The stretching vibrations of ammonium ion are

observed in the region close to the OH stretching of water

molecules in the range of 3400–2700 cm-1. The overlapping

of these bands causes the complicated vibrational spectrum.

However, the vibrational frequencies of ammonium ion

Fig. 1 TG/DTG/DTA curves of the synthesized NH4MnPO4 � H2O

at four heating rates of 10, 15, 20 and 25 K min-1 in N2 atmosphere
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appear at lower positions than those of the water molecules.

The bands observed in the 1500–1300 cm-1 region are

attributed to N–H bending vibrations. The phosphate ion

vibrations are found in the range of 1008–931, 500–375,

1176–1015 and 630–510 cm-1 for m1(A1), m2(E), m3(F2) and

m4(F2), respectively.

The FTIR spectrum in the 1090–370 cm-1 region of the

calcined NH4MnPO4 � H2O at 593 K in N2 atmosphere

(Fig. 3b) shows characteristic of MnHPO4 [32], while the

calcined product at 793 K (Fig. 3c) exhibits the same

characteristic as Mn2P2O7 [33]. The FTIR bands are

characterized based on the fundamental vibrating unit

P2O7
4- anion. The P–O stretching modes of the [P2O7]4-

anion are known to appear in the 1250–975 cm-1 region

[34–36]. The symmetric PO2 stretching vibrations (msym

PO2) of Mn2P2O7 samples are observed in the range of

1000–1100 cm-1, while the asymmetric stretching vibra-

tions (masym PO2) appear in the range of 1100–1200 cm-1.

The asymmetric (masym POP) and symmetric stretching

vibrations (msym POP) of POP bridge in this sample are

observed in the 1000–900 and 700–400 cm-1 regions,

respectively.

The authors demonstrated [37] based on the equation

suggested by Vlase et al. [38] that the specificity of non-

isothermal decomposition is due to the vibrational energy

on a certain bond, which bases on anharmonic oscillation.

Consequently, the wavenumber of the activated bond can

be calculated from the isokinetic parameter Ti using [37–

39]:

xcalc ¼
kB

hc
Ti ¼ 0:695 Ti ð8Þ

and

xsp ¼ qxcalc ð9Þ

where kB, h are the Boltzmann and Planck constants, c is

the light velocity, q is the number of quanta (q [ N) and

xsp is the assigned spectroscopic wavenumber for the bond

supposed to be broken. Ti is the isokinetic temperature as

related to the activation energy and preexponetial factor

[40, 41]. In this work, we suggested to use the average

maximum peak Tp in four heating rates to calculate xcalc

according to Eq. 8. The Tp values are 513.12, 558.24 and

720.95 K, which correspond to the first, second and third

decomposition steps, respectively. The values of xcalc for

three steps can be further related to the xsp as given in

Eq. 9 and the results are shown in Table 2. These data

reveal that the oscillations of the N–H bonds in ammonium

ion, O–H bonds in crystal water molecules and O–P–H of

MnHPO4 correlate with the elimination of NH3, water

(H2O) of crystallization and an intramolecular dehydration

in first, second and third steps, respectively. However, the

small differences of average Tp and the wavenumber for

the breaking bonds (xcalc) for the first and second steps are

affected by the co-elimination of an ammonia and a water

of crystallization. The studied hydrate exhibits a very good

agreement between the calculated wavenumber and the

corresponding observed wavenumber in FTIR spectra.

Fig. 2 SEM micrographs of synthesized NH4MnPO4 � H2O (a) and its calcined products at 593 K (b) and 793 K (c) in N2 atmosphere

Fig. 3 FTIR spectra of the synthesized NH4MnPO4 � H2O (a), the

calcined NH4MnPO4 � H2O in N2 atmosphere at 593 K (b) and at

793 K (c)
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X-ray powder diffraction

The XRD patterns of the synthesized NH4MnPO4 � H2O

and its calcined products at 593 and 793 K in N2 atmo-

sphere are shown in Fig. 4. All detectable peaks of the

NH4MnPO4 � H2O and the calcined products at 593 and

793 K in N2 atmosphere are indexed as the synthesized

NH4MnPO4 � H2O, MnHPO4 and Mn2P2O7 structures,

those are identified using the standard data of PDF #

860577, PDF # 470199 and PDF # 771243, respectively.

These results indicated that NH4MnPO4 � H2O and

Mn2P2O7 crystallize in orthorhombic system with space

group Pmn21 (Z = 2) and monoclinic system with the

space group C2/m (Z = 2), respectively. In the case of

MnHPO4, the corresponding PDF standard file is not

available. However, this structure is estimated to be the

highly amorphous phase, which is confirmed by the PDF #

470199 for the case of MnHPO4 � 2.25H2O compound.

The average crystallite sizes and lattice parameters of these

compounds calculated from XRD patterns are tabulated in

Table 1. The lattice parameters of NH4MnPO4 � H2O and

Mn2P2O7 are compared with those reported in the standard

data and found to agree well.

Kinetic and thermodynamic studies

Calculation of the activation energy

and preexponential factor

The use of isocoversional or model-free methods (Kis-

singer, Ozawa and KAS) has increased recently due to the

ability of these methods to calculate activation energy

values without modelistic assumptions. In addition, the

Kissinger method can be applied to calculate the pre-

exponential factor, while the Ozawa and KAS methods can

be used only to calculate the activation energy E values.

Besides, the temperature corresponding to the maximum

reaction rate (Tp) in Kissinger method can be used to

estimate the wavenumber of the activated bond according

to Eq. 8. The Kissinger plots according to Eq. 5 obtained

from four DTA measurements are presented in Fig. 5. The

calculated activation energies (Ea) and preexponential

factor (A) with best linear correlation coefficient (r2) were

presented in Tables 2 and 3, respectively. The activation

energy values of three steps were found to be 110.77,

180.77 and 201.72 kJ mol-1, respectively, which reveal

that the next step can occur harder than the previous step.

However, the kinetic parameters (A and E) can be evalu-

ated with different calculation procedures. The first and

second steps exhibit lower activation energy in comparison

with the third decomposition step. This is reasonable,

because the third step corresponds to a covalent P–OH

bond breaking. The small difference (20–70 kJ mol-1) of

Fig. 4 XRD patterns of the synthesized NH4MnPO4 � H2O (a), the

calcined NH4MnPO4 � H2O in N2 atmosphere at 593 K (b) and at

793 K (c)

Table 1 Average particle sizes and lattice parameters of NH4MnPO4 � H2O and calcined NH4MnPO4 � H2O at 593 and 793 K in N2 atmo-

spheres calculated from XRD data

l Method a/Å b/Å c/Å b/o Average particle

sizes (nm)

NH4MnPO4 � H2O PDF # 860577 5.730 8.819 4.908 – –

This work 5.71(3) 8.81(5) 4.90(1) – 47 ± 9

DIF. PDF—this work 0.017 0.004 0.007 –

MnHPO4 NH4MnPO4 � H2O calcined (320 �C) PDF # 441319 Non-crystalline

This work Non-crystalline

DIF. PDF—this work Non-crystalline

Mn2P2O7 NH4MnPO4 � H2O calcined (520 �C) PDF # 771243 6.633 8.584 4.646 102.67 –

This work 6.69(5) 8.55(0) 4.66(6) 102.88(4) 32 ± 8

DIF. PDF—this work -0.062 0.034 -0.02 -0.214

— not detectable
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activation energies in three transformation steps indicates

that they are not completely separated [31], however the

three maxima can be identified. The decomposition of

NH4MnPO4 � H2O under non-isothermal conditions, com-

prises of three non-separable steps: deammination, dehy-

dration and polycondensation. The preexponential factors

of three steps were found to be 1.59 9 1011, 9.52 9 1016

and 3.2 9 1014 min-1, respectively. These values reflect to

the collision frequencies which reveal that the number of

collision of molecules are in the sequence: step 2 [ step

3 [ step 1. The results can be interpreted in terms of the

non-completely separable processes among the deammin-

ation, dehydration and decomposition (polycondensation)

steps based on the comparable magnitude of the frequency

factor (A).

Calculation of thermodynamic parameters

The pre-exponential factor or Arrhenius constant (A) can

be calculated only by Kissinger method. The related ther-

modynamic functions can be evaluated by using the acti-

vated complex theory (transition state) of Eyring [42, 43].

The following general equation can be written [43]:

A ¼ evkBT0

h

� �
exp

DS 6¼

R

� �
ð10Þ

where e is the Neper number (e = 2.7183), v is the

transition factor, which is unity for monomolecular

reaction, kB is the Boltzmann constant

(kB = 1.3806 9 10-23 J K-1), h is Plank’s constant

(h = 6.6261 9 10-34 J s), T0 is the peak temperature of

the DTA curve (corresponding stage in the highest heating

rate) and DS= is the entropy change of transition state

complex or entropy of activation. Thus, the entropy of

activation may be expressed as follows:

DS 6¼ ¼ R ln
Ah

evkBT0

: ð11Þ

The enthalpy change of transition state complex or heat

of activation (DH=) and Gibbs free energy of activation

(DG=) can be calculated according to Eqs. 12 and 13,

respectively.

DH 6¼ ¼ E 6¼ � RT0 ð12Þ

DG 6¼ ¼ DH 6¼ � T0DS 6¼ ð13Þ

where E= is the activation energy Ea calculated from the

Kissinger method. Thermodynamic parameters were cal-

culated from Eqs. 11–13 and are summarized in Table 3.

The positive values of DS= for the second and third steps

reveal that the activated state is highly disordered com-

pared to the initial state. On the other hand, the negative

Fig. 5 Kissinger plots of the transformation due to the dehydration

(a) deamination (b) and polycondensation (c) steps of

NH4MnPO4 � H2O

Table 2 Comparison between kinetic and spectroscopic data from Kissinger method

Step Temperature/K in four heating

rates/K min-1
Ea/

kJ mol-1
Average

TP/K

xcalc/cm-1 q qxcalc/

cm-1
xsp/cm-1 observed

in FT/IR spectra

Assignment

10 15 20 25

1 504.78 510.68 515.26 521.75 110.77 513.12 356.62 9 3209 3235,3029 N–H bonds

in ammonium ion

8 2852 2924,2855

4 1426 1465,1438

2 551.28 557.09 560.94 563.67 180.77 558.24 387.98 9 3492 3423 O–H in water of

crystallization

molecules

8 3104 3235,3029

4 1552 1637

3 711.08 718.27 725.41 729.04 201.72 720.95 501.06 2 1002 1040 P–O–H of MnHPO4

1 501 561
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value in the first step means that the activated complex has

lower disorderness than the initial state. These DS= values

suggest a large number of degrees of freedom due to rota-

tion and vibration which may be interpreted as a ‘‘fast’’

stage [43, 44] in dehydration and polycondensation steps,

while deammination step can be interpreted as a ‘‘slow

stage’’. The positive values of DG= at all studied steps are

due to the fact that, the deammination, dehydration and

decomposition processes are not spontaneous. The posi-

tivity of DG= is determined by a small activation entropy

and a large positive activation enthalpy according to the

Eq. 13. The results (Table 3) illustrate that the second and

third decomposition steps occur harder than the first

decomposition step. The endothermic peaks in DTA data

agree well with the positive sign of the activation enthalpy

(DH=). The calculated activation energy Ea values of three

decomposition steps exhibit the increasing Ea values from

steps 1 to 3. The same effect is also observed in DH= values

and can be interpreted that the last step need higher energy

pathway than the early ones. These results correspond well

with the calculated wavenumbers of the activated bonds.

Conclusions

NH4MnPO4 � H2O decomposes in three steps and the final

product is Mn2P2O7. The polycondensation process was

started before the early process in last steps of decompo-

sition is finished and the co-decomposition is occurred over

the range of 243–593 K. The kinetic study of thermal

decomposition of this compound was carried out by Kis-

singer method. A correlation between the non-isothermal

temperature from DTA data and the wavenumber from

FTIR data of activated complex assigned to the breaking

bond is possible to analyze the thermal sensitive part of a

molecule, by means of an adequate processing of the

thermal analysis data, in relation with the FTIR spectra.

The activation entropy DS=, enthalpy DH= and Gibbs free

energy DG= of three decomposition steps in

NH4MnPO4 � H2O can be calculated through kinetic

parameters. The thermodynamic functions agree well with

the thermal analysis data. The discussion about the acti-

vation energy, pre-exponential factor in relation to the

change of activation entropy, enthalpy and Gibbs free

energy of three decomposition steps of the title compound

is reported for the first time.
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ture, vibrational spectra and thermal decomposition of a new

tetrazinc(II) dipyrophosphate decahydrate, Zn4(P2O7). J Chem

Crystallogr. 2005;35:49–59.

36. Baril M, Assaaoudi H, Butler IS. Pressure-tuning Raman mic-

rospectroscopic study of cobalt(II), manganese(II), zinc(II) and

magnesium(II) pyrophosphate dehydrates. J Mol Struct. 2005;

751:168–71.

37. Boonchom B, Danvirutai D. Thermal decomposition kinetics of

FePO4 � 3H2O precursor to synthetize spherical nanoparticles

FePO4. Ind Eng Chem Res. 2007;46:9071–6.

38. Vlase T, Vlase G, Doca M, Doca N. Specificity of decomposition

of solids in non-isothermal conditions. J Therm Anal Calorim.

2003;72:597–604.

39. Pop N, Vlase G, Vlase T, Doca N, Mogos A, Ioitescu A. Com-

pensation effect as a consequence of vibrational energy transfer

in homogeneous and isotropic heat field. J Therm Anal Cal.

2008;92:313–7.

40. Mianowski A, Marecka A. The isokinetic effect as related to the

activation energy for the gases diffusion in coal at ambient

temperatures Part I. Fick’s diffusion parameter estimated from

kinetic curves. J Therm Anal Calorim. 2009;95:285–92.

41. Ioitescu A, Vlase G, Vlase T, Doca N. Kinetics of decomposition

of different acid calcium phosphates. J Therm Anal Calorim.

2007;88:121–5.

42. Rooney JJ. Ering transition-state theory and kinetics in catalysis.

J Mol Catal A. 1995;96:L1.

43. Boonchom B. Kinetics and thermodynamic properties of the

thermal decomposition of manganese dihydrogenphosphate

dihydrate. J Chem Eng Data. 2008;53:1533–8.

44. Vlaev L, Nedelchev N, Gyurova K, Zagorcheva M. A compara-

tive study of non-isothermal kinetics of decomposition of calcium

oxalate monohydrate. J Anal Appl Pyrol. 2008;81:253–62.

124 C. Danvirutai et al.

123


	Some thermodynamic functions and kinetics of thermal decomposition of NH4MnPO4 middot H2O in nitrogen atmosphere
	Abstract
	Introduction
	Experimental
	Preparation
	Characterization
	Kinetics studies

	Results and discussion
	TG/DTG/DTA
	SEM
	FTIR spectroscopy
	X-ray powder diffraction
	Kinetic and thermodynamic studies
	Calculation of the activation energy  and preexponential factor
	Calculation of thermodynamic parameters


	Conclusions
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


